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Abstract—Joint blind source separation (JBSS) is a powerful
methodology for analyzing multiple related datasets, able to
jointly extract sources that describe statistical dependencies
across the datasets. However, JBSS can be computationally
prohibitive with high-dimensional data, thus there exists a
key need for more efficient JBSS algorithms. JBSS algorithms
typically rely on numerical solutions, which may be expensive
due to their iterative nature. In contrast, analytic solutions
follow consistent procedures that are often less expensive. In this
paper, we introduce an efficient analytic solution for JBSS.
Denoting a set of sources dependent across the datasets as
a “source component vector” (SCV), our solution minimizes
correlation among separate SCVs by minimizing distance of the
SCV cross-covariance’s eigenvector matrix from a block diagonal
matrix. Under the orthogonality constraint, this leads to a system
of linear equations wherein each subproblem has an analytic
solution. We derive identifiability conditions of our solution’s
estimator, and demonstrate estimation performance and time
efficiency in comparison with other JBSS algorithms that exploit
source correlation across datasets. Results demonstrate that our
solution achieves the lowest asymptotic computational complexity
among JBSS algorithms, and is capable of superior estimation
performance compared with algorithms of similar complexity.

Index Terms—Joint blind source separation, independent vec-
tor analysis, multiset canonical correlation analysis.

I. INTRODUCTION

BLIND source separation (BSS) techniques have use over
a wide range of applications [1], [2], [3], providing useful

data-driven representations of latent structure within a single
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dataset. While single dataset applications are common, many
other applications require the analysis of multiple datasets, in
which these multiple datasets may be inherently related due to
their similar or shared information. A classic example of this
is with multi-subject functional magnetic resonance imaging
(fMRI) data, where signals within each subject’s dataset exhibit
dependence across the datasets, typically representing similar
functional network activity [4], [5], [6], [7], [8]. To represent
this information within the analysis, joint blind source sep-
aration (JBSS) techniques generalize the capabilities of BSS
by jointly analyzing the datasets, allowing JBSS to model and
exploit any statistical dependencies existing across the datasets
[4], [5], [6], [9], [10], [11], [12], [13], [14], [15], [16]. This leads
JBSS to achieve powerful estimators, potentially outperforming
BSS not only by superior estimation performance, but also
through the key benefit of uncovering the dependence relations
across datasets [4], [5], [6], [9]. Applications of JBSS include
analysis of fMRI [4], [5], [6], [7], [8], electroencephalography
(EEG) [17], electrocardiography (ECG) [18], and remote sens-
ing data [14], speech enhancement [19], molecular property
prediction [20], and various others.

One general formulation of JBSS arrives from independent
vector analysis (IVA), a multi-dataset extension of independent
component analysis (ICA) for BSS [9], [10], [11]. IVA models
each dataset as mixtures of latent sources, wherein each source
is modeled as independent to all other sources within its own
dataset and dependent to a single source within each of the
other datasets. By formulating each set of dependent sources
as a multivariate “source component vector” (SCV), IVA per-
forms JBSS by maximizing independence among the separate
SCVs, similar to how ICA maximizes independence among the
univariate sources within a single dataset.

Among IVA algorithms, perhaps the most computation-
ally practical algorithm models each SCV as generated from
a multivariate Gaussian distribution (IVA-G) [10]. By mod-
eling sources as Gaussian, statistical dependence between
sources is completely described by second-order statistics
(SOS), i.e. source correlation, and thus IVA-G operates
by minimizing correlation among the separate SCVs. This
results in several practical advantages that IVA-G enjoys
compared with other IVA algorithms, such as lower compu-
tational complexity and lower data storage requirements, as
IVA-G only needs to execute linear operations over covariance
matrices to perform JBSS. In contrast, IVA algorithms that
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TABLE I
NOTATIONS USED IN THIS PAPER (SECTIONS II–IV). VECTORS ARE GIVEN AS COLUMN VECTORS, E.G. w[k]

n IS A COLUMN VECTOR, AND

(w
[k]
n )� IS A ROW VECTOR, WITH � DENOTING THE TRANSPOSE. DATASETS AND SOURCES ARE REPRESENTED AS A RANDOM VECTOR

(E.G. x[k] ∈ R
N ), OR BY T OBSERVED SAMPLES OF A RANDOM VECTOR (E.G. X[k] ∈ R

N×T )

. .
K number of datasets (dataset index k = 1, . . . ,K)
N number of SCVs (SCV index n= 1, . . . , N )
T number of samples (sample index t= 1, . . . , T )

x[k] / X[k] kth dataset
s[k] / S[k] kth dataset’s sources
y[k] / Y[k] kth dataset’s estimated sources

x
[k]
n / x[k]

n nth observed signal in kth dataset

s
[k]
n / s[k]n nth source in kth dataset

y
[k]
n / y[k]

n nth estimated source in kth dataset
A[k] kth dataset’s mixing matrix
W[k] kth dataset’s estimated demixing matrix

(w
[k]
n )� nth demixing vector (row) in W[k]

sn / Sn nth SCV
yn / Yn nth estimated SCV
s / S vertical concatenation of the N SCVs
y / Y vertical concatenation of the N estimated SCVs
x / X vertical concatenation of the K datasets

Pn nth SCV’s demixing vectors (w
[k]
n )� in a block matrix

P vertical concatenation of all N SCV’s Pn

Popt optimal P matrix
. .

. .
(W[k])opt optimal W[k] demixing matrix

(w
[k]
n )�opt optimal (w[k]

n )� demixing vector
Cs SCV cross-covariance matrix
Csn nth SCV covariance matrix
Ĉy estimated SCV cross-covariance matrix
Ĉyn nth estimated SCV covariance matrix

Cx / Ĉx covariance / sample covariance matrix of x
Vs / Ds eigenvectors / eigenvalues of Cs

Vsn / Dsn eigenvectors / eigenvalues of Csn

V̂y eigenvectors of Ĉy

Vx / V̂x eigenvectors of Cx / Ĉx

(v̂y)
[k]�
n row in V̂y corresponding to (w

[k]
n )�

(V̂
[k]
x )n submatrix in V̂x corresponding to (w

[k]
n )�

V
[k]
x N rows of Vx corresponding to kth dataset

V
[k]
s N rows of Vs corresponding to the kth dataset

(v
[k]
sn )� kth row of Vsn

G[k] pairwise similarity of columns in V
[k]
x

G eigenvector similarity matrix
. .
. .

model SCV distributions as non-Gaussian make use of both
second and higher-order statistics (HOS), resulting in IVA al-
gorithms applying non-linear functions to the data with sig-
nificantly higher computational expenses [11]. Furthermore,
it is notable that regardless of the distributions of the un-
derlying SCVs, algorithms exploiting only source correlation
across datasets are fully capable of estimating the underly-
ing SCVs, so long as the SCVs are uncorrelated (which also
holds if the SCVs are statistically independent) [10], [21], [22].
These reasons make IVA-G a practical algorithm for JBSS in
most scenarios.

Canonical correlation analysis (CCA) is the oldest method
capable of JBSS, and is typically used to estimate corre-
lated sources across two datasets [12]. CCA extended to mul-
tiple datasets, called multiset canonical correlation analysis
(MCCA), has proven useful for obtaining correlated sources
across multiple datasets [6], [13], [14], [15]. MCCA algorithms
operate like IVA-G in that they exploit source correlation across
datasets to achieve decompositions. MCCA is also fully capable
of performing JBSS, likewise able to estimate underlying SCVs
so long as the SCVs are uncorrelated [6].

Despite the many strengths of JBSS, little work has been done
to address its computational challenges. Particularly when data
is high-dimensional, with large numbers of sources or datasets,
computational complexity makes most JBSS algorithms infea-
sible. These challenges even extend to algorithms exploiting
only source correlation across datasets, such as IVA-G and
MCCA. One notable reason is that virtually all JBSS algorithms
rely on numerical solutions, where an initial guess is iteratively
refined until converging to a solution.

Thus in this paper, we propose an efficient analytic solution
to JBSS derived from an eigendecomposition-based approach.
Under assumption that the latent SCVs are uncorrelated, the

SCV cross-covariance is a block diagonal matrix, and thus
the SCV cross-covariance’s eigenvectors also form a block
diagonal matrix. We exploit this property via minimizing the
distance of the SCV cross-covariance’s eigenvectors from a
block diagonal matrix, and show that each source’s subproblem
is equivalent to solving a system of linear equations from eigen-
vectors of the observed data’s covariance matrix. This algo-
rithm, which we call “analytic cross-correlation minimization”
(ACCM), achieves the lowest asymptotic computational com-
plexity of all JBSS algorithms. We demonstrate performance of
ACCM on simulated data, showing ACCM is not only among
the most efficient JBSS algorithms, but also provides generally
superior separation performance compared to algorithms of
similar complexities. We then demonstrate the performance of
ACCM on fMRI hybrid data, and discuss the contribution
of ACCM in the general JBSS setting.

The paper is organized as follows. Section II formulates the
JBSS problem. Section III introduces a JBSS cost function
measuring SCV cross-correlation via the “block diagonality”
of the SCV cross-covariance matrix. Section IV proposes an
alternative cost measuring “block diagonality” of the SCV
cross-covariance’s eigenvector matrix (assuming uncorrelated
SCVs), from which we derive the minima of this cost given
the eigenvectors of the observed data’s covariance. Here we
also introduce the analytic solution and derive the correspond-
ing estimator’s identifiability conditions. Section V discusses
the theory of other JBSS methods and compares these to the
proposed algorithm. Section VI demonstrates performance of
the algorithm with respect to simulated data, and performance
with respect fMRI sources within a hybrid experiment. Sec-
tion VII discusses the contribution of the algorithm in the gen-
eral JBSS setting. Section VIII concludes with takeaways on the
proposed algorithm.
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II. JBSS PROBLEM FORMULATION

We first formulate the general JBSS problem where the data
is modeled as a random vector. We have K datasets, each
observed over T samples, where each dataset is modeled as
a linear mixture of N independent sources. With x[k](t) =

[x
[k]
1 (t), …, x[k]

N (t)]� ∈ R
N denoting the N observed signals

within the kth dataset at sample index t, these signals are mod-
eled as mixtures of N latent source signals s[k](t) = [s

[k]
1 (t),

…, s[k]N (t)]� ∈ R
N , that are mixed by an unknown invertible

matrix A[k] ∈ R
N×N to produce the datasets x[k](t). Here, (.)�

denotes the transpose. The generative model is:

x[k](t) =A[k]s[k](t), t= 1, . . . , T, k = 1, . . . ,K (1)

To estimate the underlying sources within the K datasets,
JBSS algorithms estimate K demixing matrices W[k] ∈
R

N×N that demix each dataset into their corresponding esti-
mated sources y[k](t) = [y

[k]
1 (t), …, y[k]N (t)]� ∈ R

N , given by
y[k](t) =W[k]x[k](t). The nth row of demixing matrix W[k] is
given by (w

[k]
n )�, and is used to estimate the nth source within

the kth dataset, given by y
[k]
n (t) = (w

[k]
n )�x[k](t).

Since the K datasets are observed over T samples, the ob-
served datasets are represented by matrices X[k] = [x[k]

1 , …,
x
[k]
N ]� ∈ R

N×T , and the generative model in (1) is given as
X[k] = A[k] S[k], with latent sources given by S[k] = [s[k]1 , …,
s
[k]
N ]� ∈ R

N×T , and estimated sources given by Y[k] = W[k]

X[k] = [y[k]
1 , …, y[k]

N ]� ∈ R
N×T .

JBSS is distinguished from BSS in that JBSS exploits depen-
dence across the K datasets to leverage cross-information and
improve overall estimation performance. JBSS formulations
assume that sources of the same index n are dependent across
the K datasets, thus forming N sets of K sources. In IVA termi-
nology, each of these sets is referred to as a “source component
vector” (SCV), and for simplicity we refer to these sets as SCVs
for the other JBSS algorithms as well. The nth SCV is given as
sn = [s

[1]
n , …, s[K]

n ]� ∈ R
K , which is estimated by yn = [y

[1]
n ,

…, y[K]
n ]� ∈ R

K (for simplicity of notation, we drop sample
index t when describing random variables or random vectors).
Over T samples of the data, the nth SCV is represented by the
matrix Sn = [s

[1]
n , …, s[K]

n ]� ∈ R
K×T , which is estimated by

Yn = [y
[1]
n , …, y[K]

n ]� ∈ R
K×T . Typically each SCV is mod-

eled as independent (and uncorrelated) from all other SCVs,
and thus any two sources across the datasets are modeled as
dependent only if they correspond to the same index n (nth
SCV).

JBSS algorithms can only identify demixing matrix vectors
(w

[k]
n )� and estimated sources y

[k]
n up to scaling and permu-

tation ambiguity within each dataset. JBSS additionally orders
sources within each dataset to align with the order of SCVs,
such that the nth source within a dataset corresponds to the
nth SCV. In practice, the scaling ambiguity can be removed by
requiring each estimated source to have unit variance.

Furthermore, most implementations of JBSS involve stan-
dardizing and pre-whitening each dataset prior to estimation.

The advantage is that if sources are standardized and pre-
whitened within each dataset, then the residual mixing matri-
ces A[k] become orthogonal, or asymptotically orthogonal for
the observed datasets X[k] as T →∞ (since E

{
s[k]s[k]

�}
=

limT→∞
1

T−1 S[k] S[k]� = I, thus E
{
x[k]x[k]�

}
= limT→∞

1
T−1 X

[k] X[k]� =A[k] A[k]� = I), in which case orthogonality
constraints can be imposed on W[k] to considerably simplify
the problem [23]. For the remainder of the paper, we assume that
sources and datasets are standardized, and that datasets have
been pre-whitened prior to JBSS.

III. JOINT COVARIANCE BLOCK DIAGONALIZATION COST

Before introducing the proposed cost, we first define quanti-
ties with respect to the N underlying SCVs sn ∈ R

K . As each
SCV is a set of standardized sources, each SCV thus has mean
E {sn} = 0 ∈ R

K and some covariance matrix (which is also
a correlation matrix) Csn � E

{
sns

�
n

}
∈ R

K×K .
Correlation among all N SCVs is described by the “SCV

cross-covariance” matrixCs =� E
{
ss�

}
∈ R

NK×NK , where
s� [(s1)

�, …, (sN )�]� ∈ R
NK is the vertical concatenation of

all N SCVs. These N SCVs are uncorrelated if and only if the
pairwise cross-covariance (cross-correlation matrix) between
any two SCVs is a matrix of zeros. If this holds, Cs is equal
to the direct sum of all N SCV covariances: Cs =

⊕N
n=1 Csn

∈ R
NK×NK , a block diagonal matrix with N blocks given by

the N SCV covariances Csn . Fig. 1(a) gives an example of Cs

for N = 4 uncorrelated SCVs.
Concerning the estimated SCVs, yn (mean 0 ∈ R

K , covari-
ance Cyn

∈ R
K×K ), we can similarly define Cy � E

{
yy�}

∈ R
NK×NK , with y � [(y1)

�, …, (yN )�]� ∈ R
NK . Over

T samples of data such that yn is represented by matrix Yn

∈ R
K×T , each Cyn

is itself estimated in practice by “estimated
SCV covariance” Ĉyn

= 1
T−1 Yn Y�

n ∈ R
K×K , and cross-

covariance Cy is itself estimated by the “estimated SCV cross-
covariance” Ĉy = 1

T−1 YY� ∈ R
NK×NK , withY= [(Y1)

�,
…, (YN )�]� ∈ R

NK×T .
From estimated SCV cross-covariance Ĉy, we may measure

the degree of SCV cross-correlation by the distance of Ĉy from
a block diagonal matrix. This is measured by the squared Frobe-
nius norm of “off-blocks” (pairwise SCV cross-covariances)
within Ĉy, which we denote by the “Joint Covariance Block
Diagonalization” (JCBD) cost:

JJCBD (Y) =

∥
∥
∥
∥
∥
Ĉy −

N⊕

n=1

Ĉyn

∥
∥
∥
∥
∥

2

F

(2)

We now consider how to formulate (2) with respect to demix-
ing vectors w

[k]
n . This is done by first noting that the nth esti-

mated SCV yn is obtainable by yn =Pnx, where we define x
� [(x[1])�, …, (x[K])�]� ∈ R

NK as the vertical concatenation
of the K datasets, represented over T samples by X= [(X[1])�,
…, (X[K])�]� ∈ R

NK×T , and Pn � [p
[1]
n ,p

[2]
n , . . . ,p

[K]
n ]�

∈ R
K×NK is defined such that p[k]

n � ek
⊗

w
[k]
n ∈ R

NK is the
Kronecker product ofw[k]

n with the kth standard basis vector ek.
By further defining P� [P�

1 ,P
�
2 , . . . ,P

�
N ]� ∈ R

NK×NK , we
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Fig. 1. SCV cross-covariance Cs ∈ R
NK×NK of N = 4 uncorrelated SCVs, and corresponding eigenvectors Vs. (a) SCV cross-covariance Cs. Blocks

on the diagonal are SCV covariances Csn = E
{
sns�n

}
= ∈ R

K×K . Off-blocks are pairwise cross-covariances (E
{
sms�n

}
∈ R

K×K for m �= n), which
equal 0 ∈ R

K×K if SCVs are uncorrelated. (b) SCV cross-covariance eigenvectors Vs, with eigenvectors (columns of Vs) permuted according to SCV
groupings (“block permuted”). The nth diagonal block of Vs contains all K eigenvectors of the nth SCV covariance Csn . (c) Vs, with eigenvectors permuted
according to corresponding eigenvalue size (smallest to largest eigenvalues, left to right).

can obtain all N estimated SCVs y, and estimated SCV cross-
covariance Ĉy:

yn =Pnx, y =Px, Ĉy =PĈxP
� (3)

where Ĉx = 1
T−1 X X� ∈ R

NK×NK is the sample estimate

of Cx = � E
{
xx�}, and Ĉ

[k,j]
x = 1

T−1 X[k] X[j]� ∈ R
N×N .

Similarly, we obtain the nth estimated SCV’s covariance by
Ĉyn

= Pn Ĉx P�
n . Thus subject to

∥
∥
∥(w[k]

n )�
∥
∥
∥
2
= 1, we may

write (2) with respect to all K demixing matrices W[k] via
matrix P, or with respect to each demixing vector (w[k]

n )�:

JJCBD(P) =

∥
∥
∥
∥
∥
PĈxP

� −
N⊕

n=1

PnĈxP
�
n

∥
∥
∥
∥
∥

2

F

(4)

JJCBD((w
[k]
n )�) =

K∑

j=1

N∑

i=1
i�=n

∥
∥
∥(w[k]

n )�Ĉ[k,j]
x w

[j]
i

∥
∥
∥
2

F
(5)

The cost in (4) is associated with algorithms that perform
“generalized joint diagonalization” [24], [25], [26], [27], [28],
whose solutions require iterative procedures and cannot be
solved analytically (since the cost for (w

[k]
n )� depends on

realizations of other demixing vectors w
[j]
i ). However in the

next section, we propose a surrogate cost to (4) that can be
solved analytically, by exploiting the assumption that Cs is
block diagonal.

IV. AN EIGENVECTOR-BASED JBSS COST

A. JBSS by Eigendecomposition of the Data

A key property of Cs being a block diagonal matrix is that its
eigendecomposition is also block diagonal. With Cs =

⊕N
n=1

Csn , the eigendecomposition of Csn is given by Csn = Vsn

Dsn V�
sn , where Vsn ∈ R

K×K is the matrix with K columns
containing the K eigenvectors of Csn , and Dsn ∈ R

K×K is a
diagonal matrix containing the K eigenvalues of Csn . Thus, the
eigendecomposition of Cs is given by Cs =Vs Ds V

�
s , where

Vs =
⊕N

n=1 Vsn ∈ R
NK×NK are the NK block diagonal

eigenvectors of Cs (representing the K eigenvectors for each
of the N SCV’s Csn ), and Ds =

⊕N
n=1 Dsn ∈ R

NK×NK is
a diagonal matrix containing the NK eigenvalues. Fig. 1(b)
shows eigenvectors Vs of an example SCV cross-covariance
Cs, with eigenvectors (columns) permuted to reveal this block
diagonal structure.

Another important consequence is the direct relationship be-
tween the eigendecompositions of SCV cross-covariance Cs

and data covariance Cx. As stated earlier, if the SCVs are
uncorrelated, it follows from pre-whitening the datasets that
the mixing matrices A[k] are orthogonal, and thus the optimal
W[k] are also orthogonal. With all optimalW[k] orthogonal, the
optimal P matrix is also orthogonal, which we denote by Popt.
This is significant concerning the noted eigendecomposition
relations, because with Cs = Popt Cx P�

opt, we have that Cs

is equal to Cx under conjugation by orthogonal matrix Popt.
Therefore, the eigenvalues of Cs and Cx are the same, and the
eigenvectors of Cs are obtained by rotating each eigenvector of
Cx by Popt. With Vx ∈ R

NK×NK denoting the eigenvectors of
Cx and V̂x the respective eigenvectors of Ĉx, this relationship
is given by:

PoptVx =Vs (6)

In regards to estimating parameter P, the implications are
that eigenvectors of the estimated SCV cross-covariance V̂y ∈
R

NK×NK can be directly obtained from P V̂x = V̂y provided
that demixing matrices W[k] are constrained to be orthogonal.

This motivates a surrogate cost to (4) where instead of mea-
suring distance of Cy from a block diagonal matrix, we intro-
duce a measure of “block diagonality” over the corresponding
eigenvectors V̂y. In terms of parameter P, this is given by the
distance between PV̂x and its nearest block diagonal matrix
B(PV̂x)(N,K), which we denote by the “Joint Eigenvector
Block Diagonalization” (JEBD) cost:

JJEBD (P) =
∥
∥
∥PV̂x − B(PV̂x)(N,K)

∥
∥
∥
2

F
(7)
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Fig. 2. Overview of the linear system of equations given in (7). Highlighted in red are the relevant quantities used to solve the subproblem for w[k]
n given

in (8), where in this example subproblem n = 1 and k = 1.

where we define B(V)(N,K) as the operation that maps eigen-
vector matrix V ∈ R

NK×NK to a block diagonal matrix of
N blocks each of size K ×K, by setting values in the “off-
blocks” of V to zero. This is analogous to (4), where we have
that B(PĈxP

�)(N,K) =
⊕N

n=1 PnĈxP
�
n .

To meaningfully minimize (7), we first assume that
eigenvectors (columns) in V̂x are permuted so that
corresponding eigenvectors (columns) in Vs form a block
diagonal matrix. In other words, eigenvectors are permuted
such that the nth set of K eigenvectors correspond to the same
SCV in Vs (eigenvector columns (n− 1)K to nK correspond
to the nth SCV). Eigendecompositon routines do not naturally
do this sorting, instead they typically sort eigenvectors
by size of their eigenvalues, for example as in Fig. 1(c).
We later explain in Section IV-C how one may sort V̂x

eigenvectors into SCV groupings, but for now we assume they
are already permuted for the purpose of explaining the follow-
ing solution.

With columns correctly permuted, minimizing (7) is sim-
plified by solving for each demixing vector (w

[k]
n )� individ-

ually. Defining (v̂y)
[k]�

n as the row of V̂y corresponding to

the same index row p
[k]�

n in P, we have from p
[k]�

n V̂x =

(v̂y)
[k]�

n that demixing vector (w
[k]
n )� associated with p

[k]�

n

is estimated to maximize block diagonality of V̂y with respect

to (v̂y)
[k]�

n . This entails minimizing the norm of NK −K

values in (v̂y)
[k]�

n corresponding to the NK −K eigenvectors
of the N − 1 other SCVs. These values are given by vector
(w

[k]
n )�(V̂

[k]
x )n ∈ R

NK−K , where (V̂
[k]
x )n ∈ R

N×NK−K is
a submatrix of V̂x formed from the N rows corresponding
to dataset k, and the NK −K columns corresponding to the
NK −K eigenvectors of the N − 1 other SCVs. Fig. 2 illus-
trates in red how (w

[k]
n )�(V̂

[k]
x )n is manifested in (7). Thus, the

cost (7) can be defined for each individual (w[k]
n )�:

JJEBD ((w[k]
n )�) =

∥
∥
∥(w[k]

n )�(V̂[k]
x )n

∥
∥
∥
2

F
(8)

Unlike the cost in (5), the cost in (8) does not depend on
realizations of the other demixing vectors, which is why mini-
mizing this cost admits an analytic solution.

The solution to (8) is given as the minimizer of the
quadratic form (V̂

[k]
x )n(V̂

[k]
x )�n ∈ R

N×N , under the constraint

that
∥
∥
∥(w[k]

n )�
∥
∥
∥
2
= 1. Therefore, (w[k]

n )� is directly estimated

by the eigenvector of (V̂
[k]
x )n(V̂

[k]
x )�n corresponding to its

smallest eigenvalue. This procedure is repeated for each of the
NK different (V̂[k]

x )n to estimate all NK demixing vectors
(w

[k]
n )� across all K demixing matrices W[k]. Since this is an

analytic solution to JBSS by minimizing SCV cross-correlation,
we refer to the procedure as “analytic cross-correlation mini-
mization” for JBSS (ACCM).

In the next section, we discuss the necessary and sufficient
conditions on the data’s generative model for which ACCM is
able to uniquely identify the true sources via (w

[k]
n )� subject

to scale and permutation ambiguity, which we refer to as the
identifiability conditions of the ACCM estimator.

B. Identifiability Conditions of the ACCM Estimator

The following theorem and proof makes use of notations and
relations introduced at the beginning of Section IV-A.

Theorem 1 (ACCM identifiability conditions): We assume
that all datasets have been pre-whitened, that the true statistics
of the data are known (Ĉx = Cx and V̂x = Vx), and that
the latent SCVs are uncorrelated (E

{
sms�n

}
= 0 for m �= n).

Then W[k] = (A[k])� for all k = 1, . . . ,K, subject to scale
and permutation ambiguity of the (w

[k]
n )�, if and only if for all

n = 1, . . . , N , there exists at least one eigenvalue within Dsn

that is unique in Ds.
Proof: we denote (W[k])opt as the optimal orthogonal ma-

trices W[k] first mentioned in Section IV-A. Without loss of
generality, (W[k])opt = (A[k])� subject to scale and permuta-
tion ambiguity. Our goal is thus to prove that W[k] = (W[k])opt

subject to scale and permutation ambiguity.
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Fig. 3. k-centric formulation (9). Columns of V[k]
s are scaled standard basis vectors, rotated by (W[k])�opt to produce V

[k]
x .

We first consider the case where all eigenvalues in Ds

are unique, and thus all corresponding eigenvectors (columns
within Vx and Vs) are uniquely determined. Later in the proof
we expand on the case when eigenvalues are not unique.

We refer to (6): PoptVx =Vs, and assume that eigenvectors
in Vs (and corresponding eigenvectors in Vx) are “block per-
muted” as explained in Section IV-A. To observe how (W[k])opt

manifests in (6), we can isolate the equations in (6) that pertain
only to the kth dataset:

(W[k])optV
[k]
x =V[k]

s (9)

where we define V
[k]
x ∈ R

N×NK as the N rows of Vx corre-
sponding to the N mixtures in the kth dataset x[k], and V

[k]
s

∈ R
N×NK likewise as the N rows of Vs corresponding to the

N sources in the kth dataset s[k]. Fig. 3 illustrates this “k-
centric” formulation given in (9).

The first item to note within this k-centric formulation is
how the block diagonality of Vs extends to V

[k]
s . Given that

SCVs are uncorrelated, each source’s row in V
[k]
s has NK −K

values equal to 0, corresponding to the NK −K eigenvectors
of the N − 1 other SCVs. V

[k]
s can formally be written as

V
[k]
s =

⊕N
n=1(v

[k]
sn )

�, where (v
[k]
sn )

� ∈ R
K is the kth row of

the eigenvector matrix Vsn corresponding to SCV covariance
Csn . This reveals that all NK columns of V[k]

s can be repre-
sented by some scaled standard basis vector en, with the nth
set of K columns (of the nth SCV) corresponding to different
scalings of the nth standard basis vector.

Now given pre-whitened data resulting in (W[k])opt as or-
thogonal, each column of V[k]

x is equal to its respective column
in V

[k]
s rotated by orthogonal matrix (W[k])�opt. With the nth

set of K columns in V
[k]
s corresponding to the nth standard

basis vector en, this means that the nth set of K columns in
V

[k]
x are equal to scaled versions of the nth row in (W[k])opt,

denoted by (w
[k]
n )�opt, since (W[k])�opt en = (w

[k]
n )opt. Therefore,

columns of (V̂
[k]
x )n are composed of scaled versions of all

(w
[k]
i )opt for i �= n, thus (V̂[k]

x )n(V̂
[k]
x )�n is a rank N − 1 matrix

with (w
[k]
n )�opt as the eigenvector corresponding to the smallest

eigenvalue (eigenvalue 0).
This proves that given the previous assumptions, and given

that all eigenvalues in Ds are unique, then W[k] = (W[k])opt

subject to scale and permutation ambiguity.
We now consider the case where some of the eigenvalues in

Ds are not unique. Uniqueness of estimating Vs (and by exten-
sion Vx) is ultimately dependent on whether the eigenvalues of
Cs are unique, specifically through the eigenvalues Dsn of the
SCV covariances Csn . Any two or more eigenvectors of Vs are
not uniquely determined if their corresponding eigenvalues are

equal. If said eigenvectors correspond to two different SCVs,
then these eigenvectors are not uniquely determined and not
uniquely block diagonal withinVs (i.e., corresponding columns
in V

[k]
s are not uniquely equal to scaled en). Thus the estimator

may fail if it includes these eigenvectors in the procedure. By
ignoring all eigenvectors of Vx (corresponding to eigenvectors
in Vs) with non-unique eigenvalues, it immediately follows that
any single SCV sn is identifiable if and only if at least one of its
eigenvalues in Dsn is unique in Ds. This completes the proof.

An additional outcome of this proof is that given ACCM
identifiability and assumptions in Theorem 1 hold, it can be
shown that the ACCM solution exactly minimizes both the
JCBD and JEBD costs in (4) and (7). With the true SCVs having
a block diagonal Cs, then there exists a block diagonal repre-
sentation of Vs even if some eigenvectors are not unique (non-
unique eigenvectors can be rotated by an orthogonal matrix into
becoming block diagonal, and still provide valid eigenvectors
of Cs). Thus in this representation, (9) exhibits a block diagonal
V

[k]
s for all k = 1, . . . ,K, like in Fig. 3. As the proof describes

W[k] = (W[k])opt subject to the aforementioned ambiguities
so long as identifiability holds, then V̂

[k]
y = V

[k]
s for all k

= 1, . . . ,K subject to sign and permutation ambiguity of the
rows of V̂[k]

y . Therefore for the ACCM estimated W[k], there
similarly exists a block diagonal representation of V̂y even if
some eigenvectors are not unique, which means that Ĉy must
also be block diagonal. Thus, the JCBD cost (4) and the JEBD
cost (7) are minimized exactly (with (7) minimized provided it
is written with respect to only the unique eigenvectors in V̂x),
both with cost value of 0.

One important characteristic to note is that the separately
estimated (w

[k]
n )� are only guaranteed orthogonal within each

W[k] when the underlying SCVs are uncorrelated. However in
practice, real-world data encounters SCVs that are not exactly
uncorrelated. Thus, separately estimated (w

[k]
n )� may not form

an orthogonal matrix, which becomes problematic as P V̂x =
V̂y is no longer true when W[k] are not orthogonal. To preserve
orthogonality, a final step after estimating each (w

[k]
n )� is to

map each W[k] to its nearest orthogonal matrix [29] by W[k]

→ W[k](W[k]�W[k])−
1
2 . We note that still the mapped W[k]

may not necessarily achieve the optimum of (7) when SCVs are
correlated. An alternative for finding this optimum would be to
split (7) into costs for each W[k], instead of for each (w

[k]
n )�

as in (8). However to our knowledge, explicitly minimizing that
cost does not admit an analytic solution. We emphasize that
our solution may not necessarily achieve the minimum cost
when SCVs are correlated, but achieves a solution typically
within range of the minimum while retaining the highly efficient
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analytic procedure. We support this statement with results in
Section VI, showing that ACCM significantly outperforms the
other orthogonally constrained methods (MCCA) when SCVs
are correlated.

As stated in Section IV-A, the proposed estimation procedure
is only achieved meaningfully if eigenvectors in V̂x can be
identified according to their N SCV groupings in Vs. In the
next section, we introduce a scheme to group eigenvectors in
V̂x corresponding to the different SCVs, by defining a similar-
ity measure between the eigenvectors from the inner-products
between columns within the V̂

[k]
x .

C. Sorting Eigenvectors for the ACCM Algorithm

From the formal definition of V
[k]
s =

⊕N
n=1(v

[k]
sn )

� in
Section IV-B, we note that all NK columns of V

[k]
s can be

represented by a scaled standard basis vector en, with the nth
set of K columns (of the nth SCV) corresponding to different
scalings of the nth standard basis vector. Therefore, any two
columns in V

[k]
s have an inner product of 0 if they correspond

to two eigenvectors of two different SCVs. Furthermore, as each
column of V

[k]
x is its corresponding column in V

[k]
s rotated

by orthogonal matrix (W[k])�opt, we likewise have that any two

columns in V
[k]
x have an inner product of 0 if they correspond

to two eigenvectors of two different SCVs.
The magnitudes of pairwise inner products between any two

columns in V
[k]
x is represented by the pairwise similarity matrix

G[k] � abs(V[k]�

x V
[k]
x ) ∈ R

NK×NK , where we define abs(V)
as the matrix obtained from the absolute values of V. This
similarity matrix allows a sorting of the NK eigenvectors of
Vx into their N SCV groups, since eigenvectors of different
SCVs will have similarity of 0 and thus eigenvectors of the same
SCV will naturally group together. This extends from the fact
that G[k] is invariant with respect to orthogonal mixing matri-

ces A[k], since abs(V[k]�

s V
[k]
s ) = abs(V[k]�

x A[k]�A[k]V
[k]
x ) =

abs(V[k]�

x V
[k]
x ).

With G[k] specific to the kth dataset, this naturally leads to
a similarity measure aggregated across the K datasets’ G[k],
denoted by eigenvector similarity matrix G ∈ R

NK×NK :

G�
K∑

k=1

G[k] =

K∑

k=1

abs
(
V[k]�

x V[k]
x

)
(10)

Here we likewise have that G is invariant with respect to A[k].
Furthermore, similarity values in G are bounded in [0 1], given
from the fact that eigenvectors in Vx are unit norm.

Estimating G thus makes it possible to learn the eigenvector
groupings of Vx, and thus makes it possible to meaningfully
estimate the W[k] matrices according to the procedure proposed
in Section IV-A. However, the proposed procedure for estimat-
ing W[k] can be simplified by the fact that each subproblem’s
(V

[k]
x )n is highly redundant, due to any SCV’s K columns

in (V
[k]
x )n effectively being scalar multiples of one another.

Omitting all but 1 column for each SCV still leads to each
subproblem’s quadratic form (V̂

[k]
x )n(V̂

[k]
x )�n as a rank N − 1

matrix with (w
[k]
n )opt as the eigenvector corresponding to the

Algorithm Analytic Cross-Correlation Minimization

Input: a set of K datasets X[k] ∈ R
N×T (k = 1, . . . ,K)

Output: a set of K demixing matrices W[k] ∈ R
N×N

1: concatenate the datasets X = [(X[1])�, …, (X[K])�]�,
estimate the data covariance Ĉx = 1

T−1 X X�, and eigen-
decompose the covariance Ĉx = V̂x D̂x V̂�

x

2: estimate the eigenvector similarity matrix:
Ĝ =

∑K
k=1 abs( V̂[k]�

x V̂
[k]
x )

3: findN eigenvectors (V̂x)N ∈ R
NK×N whoseN ×N sim-

ilarity matrix in Ĝ is as close as possible to an identity
matrix (“maximally independent” according to Ĝ).

4: estimate each w
[k]
n vector according to (8), where (V̂

[k]
x )n

∈ R
N×N−1 is formed from the N rows of (V̂x)N cor-

responding to dataset k, and from all columns of (V̂x)N
except for the nth column.

5: map all W[k] to the nearest orthogonal matrix:
W[k] → W[k](W[k]�W[k])−

1
2

smallest eigenvalue (eigenvalue 0). Therefore, (V[k]
x )n can be

constructed from only N − 1 eigenvectors in Vx corresponding
toN − 1 different SCVs, which means that the entire estimation
procedure requires finding only N eigenvectors in Vx corre-
sponding to the N different SCVs.

One possible way to find N eigenvectors of Vx correspond-
ing to the N different SCVs is to find any N eigenvectors
whose N ×N similarity matrix in G is equal or as close as
possible to an identity matrix. For the purposes of our proce-
dure, we implement a greedy search to select N eigenvectors
of V̂x whose N ×N similarity matrix in Ĝ has the minimum
Frobenius norm distance to an identity matrix.

In the next section, we overview a practical design of the
proposed algorithm given the results of the previous sections.

D. Analytic Algorithm Overview (ACCM)

We now overview the procedure of the proposed algorithm:
The algorithm’s computational complexity is dominated by

the eigendecomposition of Ĉx, of complexity O((NK)3).
Aside from this, the second most complex step is step 3. For
each (V̂x)N candidate, computing the norm of its similarity
matrix in Ĝ has complexity O(N2). If we were to evaluate
all combinations of N eigenvectors within the NK total, this
amounts to O(

(
NK
N

)
N2). In practice, we simplify this step only

selecting a few (V̂x)N candidates from eigenvectors corre-
sponding to both the largest and smallest eigenvalues in Ĉx,
exemplifying eigenvectors describing most of the effects of cor-
relation or partial correlation among SCVs in Cy. For smaller
complexity of this step, we perform a greedy search (starting
with smallest values in Ĝ), and limit the number of (V̂x)N
candidates to 1

2 (KN2)
1
3 , thus the complexity of this step is

always less than O((NK)3). Finally, steps 4 and 5 both have
complexity O(KN3), leading to the algorithm having a total
complexity of O((NK)3).
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In the next section, we discuss other JBSS algorithms ex-
ploiting source correlation across datasets. We compare imple-
mentation of these algorithms with ACCM, in preparation for
performance evaluations in Sections VI and VII.

V. RELATIONSHIP TO OTHER JBSS ALGORITHMS EXPLOITING

SOURCE CORRELATION ACROSS DATASETS

A. IVA—Multivariate Gaussian Distribution (IVA-G)

IVA-G assumes that each SCV has a probability distribution
function (PDF) characterized by the i.i.d. multivariate Gaussian
distribution [10]. Using the previously defined quantities, this
leads to the general IVA-G cost function:

JIVA-G(W) =
NK log(2πe)

2
+

1

2

N∑

n=1

log

∣
∣
∣
∣ det

(
Ĉyn

) ∣
∣
∣
∣

−
K∑

k=1

log

∣
∣
∣
∣ det

(
W[k]

) ∣
∣
∣
∣

where W = {W[1], . . . ,W[K]} is the set of W[k]. The term

log|det
(
Ĉyn

)
|measures correlation within the nth SCV, while

the term log|det
(
W[k]

)
| acts as a penalty keeping W[k] close

to orthogonal.
Unlike most other JBSS methods exploiting source corre-

lation across datasets, IVA-G does not constrain W[k] to be
orthogonal. This gives IVA-G the ability to estimate correlated
SCVs, leading to a significantly more robust estimator. IVA-G
also has less stringent identifiability conditions than other meth-
ods (including ACCM): provided that no two sources within
an SCV are independent, IVA-G can identify all SCVs so long
as any two SCVs si and sj do not have identical covariances
Csi and Csj subject to the aforementioned ambiguities. Thus,
IVA-G may be considered a “gold standard” of JBSS algorithms
exploiting source correlation across datasets.

However, compared with other JBSS algorithms exploiting
source correlation, IVA-G suffers considerably in terms of com-
putational complexity. Asides from initial costs of estimating
Ĉx, each IVA-G iteration requires updating all NK demixing
vectors w

[k]
n , where each of these w

[k]
n operations involves an

update of W[k] of O(N3) complexity, an update of Ĉyn
of

O(N2K) complexity, and an update of Ĉ−1
yn

of O(K3) complex-
ity. If the algorithm requires q iterations to converge, this leads
to IVA-G having a total complexity of O(q(N4K +N3K2 +
NK4)).

B. MCCA

MCCA generalizes CCA to more than two datasets, and
variations of MCCA are capable of JBSS [6]. Using previously
defined concepts, the goal at each stage of MCCA is to estimate
demixing vectors w

[k]
n corresponding to SCV yn such that

correlation in the SCV’s estimated Ĉyn
is maximized.

Five variants of MCCA exist, each employing a different em-
pirical measure of correlation in Ĉyn

. These costs are evaluated
with respect to covariance entries (Ĉyn

)ij , or eigenvalues λ̂k,
where λ̂k is the kth largest eigenvalue of Ĉyn

. The five variants

are given by their cost functions:
1) SUMCORR: maximize the sum of elements in Ĉyn

JSUMCORR (Ĉyn
) = 1� Ĉyn

1.
2) MAXVAR: maximize the largest eigenvalue of Ĉyn

JMAXVAR (Ĉyn
) = λ̂1.

3) MINVAR: minimize the smallest eigenvalue of Ĉyn

JMINVAR (Ĉyn
) = λ̂K .

4) SSQCOR: maximize the sum of squared elements of
Ĉyn

, equal to sum of squared eigenvalues of Ĉyn

JSSQCOR (Ĉyn
) =

∑K
i=1

∑K
j=1 (Ĉyn

)2ij =
∑K

k=1 λ̂2
k.

5) GENVAR: minimize the product of eigenvalues (deter-
minant) of Ĉyn

JGENVAR (Ĉyn
) =

∏K
k=1 λ̂k.

With pre-whitened data, all MCCA algorithms constrain
W[k] to be orthogonal. All MCCA algorithms (with exception
of SUMCORR) are solved by deflationary procedures esti-
mating each SCV one at a time, where w

[k]
n are constrained

orthogonal to previously estimated w
[k]
i for i < n. GENVAR

and SSQCOR are necessarily solved by iterative procedures
where an initial guess is refined until convergence, whereas
SUMCORR, MAXVAR, and MINVAR are achievable with
analytic solutions. Table II lists the computational complexities
of ACCM, IVA-G and the 5 variants of MCCA.

Several of the MCCA algorithms have noteworthy connec-
tions to the previously mentioned JBSS algorithms. GENVAR
can be seen as a deflationary, orthogonally constrained version
of IVA-G. Similarly, SSQCOR can be seen as a deflationary
approach to minimizing the JCBD cost in (5). This connection
of SSQCOR to (5) is provable from the fact that given W[k]

are constrained orthogonal, maximizing the squared norm of
the SCV covariances is equivalent to minimizing the squared
norm of the SCV cross-covariances in (5).

MAXVAR and SUMCORR both model each SCV Sn ∈
R

K×T as a common source shared across datasets, specifically
a rank 1 “signal” matrix plus a full rank “noise” matrix:

Sn = unv
�
n + Zn, 1≤ n≤N (11)

where we define vn ∈ R
T as the common source, un ∈ R

K

as the weights of vn within each s
[k]
n , and Zn ∈ R

K×T as the
additive noise matrix (assumed to have a diagonal covariance
matrix). The differences in the algorithms is on how un is mod-
eled: SUMCORR assumes that weights in un are equivalent
to one another, while MAXVAR estimates un that minimizes
tr[var{Sn − unv

�
n }], where tr[.] denotes the trace and var{.}

denotes the variance [13].
SUMCORR is particularly notable for an analytic solution

highly similar to ACCM. Like ACCM, the SUMCORR solution
is estimated directly from eigenvectors of Ĉx [14], [15]. With
the previously defined concepts in Section IV, provided that
datasets are pre-whitened, the SUMCORR w

[k]
n are directly ob-

tained from the N principal eigenvectors of Ĉx (corresponding
to the N largest eigenvalues). Specifically, the nth principal
eigenvector of Ĉx, denoted by v̂xn

∈ R
NK , is the concatena-

tion of scaled SUMCORR demixing vectors of the nth SCV:
v̂xn

= [(w[1]
n )�, . . ., (w[K]

n )�]�. This solution can be seen
as performing a rank-N PCA on the vertical concatenation of
datasets, and is elsewhere called group-PCA [30]. This simple
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TABLE II
COMPUTATIONAL COMPLEXITY IN THE LIMIT OF ACCM, IVA-G, AND THE 5 VARIANTS OF MCCA. HERE q IS THE NUMBER OF ITERATIONS,

RELEVANT ONLY FOR THE ITERATIVE ALGORITHMS (SSQCOR, GENVAR, IVA-G)

ACCM SUMCORR MAXVAR MINVAR SSQCOR GENVAR IVA-G

O(N3K3) O(N3K3) O(3N4K3) O(3N4K3) O(q(3N4K + 2N3K2))
O(q(3N4K +N3K2

+NK(K − 1)2))
O(q(KN4 +K2N3

+NK4))

analytic solution leads to SUMCORR being among the most
efficient of all JBSS algorithms, as shown in Table II. In com-
parison, the ACCM solution is estimated from N eigenvectors
that are maximally independent according to eigenvector sim-
ilarity matrix Ĝ (eigenvectors that are most “block diagonal”
at the optimum), which better ensures that the N eigenvectors
correspond to the N different SCVs (and thus all N SCVs are
identified).

While complexities of SUMCORR and ACCM are identical
in the limit (both O(N3K3)), there are several advantages that
ACCM provides over SUMCORR. To estimate the true sources,
SUMCORR requires that the N principal eigenvectors of Ĉx

correspond to the N different SCVs. Thus, SUMCORR has
identifiability conditions that the largest eigenvalue of each
Csn must be both unique in Ds, and larger than the second
largest eigenvalue of all other Csn . Thus, SUMCORR has
more stringent identifiability conditions compared to ACCM.
Fig. 1(c) displays one example when ACCM is able to identify
the sources but SUMCORR fails. Furthermore, when SCVs are
correlated, “off-block” entries in the N principal eigenvectors
are typically much farther from 0 than “off-block” entries in
other eigenvectors, thus ACCM may choose better eigenvectors
for minimizing SCV cross-correlation.

C. Joint Diagonalization Approaches for JBSS

Another approach to solving the BSS problem has been
through joint diagonalization (JD) of multiple matrices, e.g.,
JADE [31] and SOBI [32] are two such early algorithms,
and now have many variants. Several generalizations of these
have also been proposed for JBSS [24], [25], [26], [27], [28],
which are called “generalized joint diagonalization” (GJD).
GJD algorithms typically estimate demixing matrices W[k] that
jointly diagonalize a set of “cumulant matrices” that describe
source dependence within and across the datasets. One note-
worthy use of cumulant matrices are the covariances/pairwise
cross-covariances between the K datasets (E

{
x[i]x[j]�

}
for

1≤ i, j ≤K), for which it can be shown that the general GJD
cost used in [24] is equivalent to the JCBD cost in (4), provided
that W[k] are constrained to be orthogonal. In BSS terminology,
this form of GJD provides a “symmetric” iterative procedure
for minimizing (4) (i.e., all demixing vectors w

[k]
n are learned

in parallel), as opposed to the deflationary iterative procedure
provided by SSQCOR for minimizing (4).

Other types of matrices used in GJD-type algorithms include
fourth-order cumulant matrices as in JADE and auto-covariance
matrices describing sample to sample dependence within and
across the sources, as in SOBI. This flexibility in cumulant
matrices make GJD algorithms attractive for JBSS.

In the next section, we demonstrate performance of these
JBSS algorithms in Section V with simulated data, demonstrat-
ing how each algorithm’s separation performance depends on
the statistics that define the generative model of the data and
underlying sources. After that, we demonstrate performance on
real fMRI sources in the context of a hybrid experiment.

VI. RESULTS

We use joint inter-symbol-interference (joint-ISI) to com-
pare separation performance of JBSS algorithms when A[k] are
known, such as for simulations. Joint-ISI is given by:

ISIJNT (W ,A)� 1

2N(N − 1)

[
N∑

n=1

(
N∑

m=1

q̄[n,m]

maxp q̄[n,p]
− 1

)

+
N∑

m=1

(
N∑

n=1

q̄[n,m]

maxp q̄[p,m]
− 1

)]

With W as the set of W[k], A as the set of A[k], Q[k] =
W[k] A[k] as the “mixing-demixing matrix” of the kth dataset,
q
[k]
[m,n] as the [m,n] entry in Q[k], and q̄[m,n] =

∑K
k=1 |q

[k]
[m,n]|.

Joint-ISI is given in [10] as an extension of the inter-symbol-
interference measure (ISI) introduced in [33]. Joint-ISI is nor-
malized in [0 1], and collectively measures how close each Q[k]

= W[k] A[k] matrix is to a permuted diagonal matrix, with 0
joint-ISI indicative of perfect separation.

As our paper primarily focuses on efficient JBSS, we limit
our results to the source correlation-based algorithms explained
in Section V. These include IVA-G, the 5 variants of MCCA,
and the GJD algorithm in [24] called “JBSS-SOS”, which min-
imizes (4) subject to the orthogonality constraint.

For all performance evaluations done in Sections VI and VII,
we use the computational recources provided by the UMBC
High Performance Computing Facility (HPCF), thus CPU time
is reflective of HPCF’s capabilities. All iterative algorithms
used a maximum 1000 iterations and same stop criteria ζ

≤ 0.0001, defined by ζ = max(1− diag(W[k]
oldW

[k]�)) where
W

[k]
old is W[k] of the previous iteration.

A. Performance With Simulated Data

Our SCV generative model is as follows. We model an SCV
Sn ∈ R

K×T (mean 0 ∈ R
K , covariance Csn ∈ R

K×K ) as the
sum of a low rank source matrix and a full rank noise matrix:

Sn =UnV
�
n + Zn, 1≤ n≤N, (12)

where we define Vn ∈ R
Rn×T as the low rank source compo-

nents spanning the SCV, Un ∈ R
K×Rn as the weights of the

source components within each s
[k]
n , and Zn ∈ R

K×T as the
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additive noise matrix of Sn. The number of components Rn is
called the effective rank of SCV Sn, which represents a level
of “complexity” within the SCV. SCVs with a larger effective
rank tend to have covariances Csn closer to an identity matrix
(less correlation among sources in Sn).

This model in (12) generalizes the MAXVAR and SUM-
CORR model of Sn = un v�

n + Zn in (11), where our model
allows the effective rank of Sn to be greater than 1.

In order to have full control over simulation of SCVs, we
define a model analogous to (12) on the covariances Csn :

Csn = αnQnQ
�
n + (1− αn)IK , 1≤ n≤N, (13)

where IK ∈ R
K×K is the identity matrix (covariance of Zn),

Qn ∈ R
K×Rn is a matrix where rows of Qn are random unit

norm Gaussian distributed vectors (thus Qn Q�
n is a random

rank Rn correlation matrix), and αn is a value in [0 1] determin-
ing the signal to noise ratio (SNR) of the SCV. By this model,
we can generate a SCV following the low rank model in (12)
by directly specifying its covariance in (13).

We also test algorithm performance in the event that
SCVs are not exactly uncorrelated. We introduce SCV cross-
correlation by simulating all Sn together concurrently: S �
[(S1)

�, …, (SN )�]� ∈ R
NK×T (mean 0 ∈ R

NK , covariance
Cs ∈ R

NK×NK ). This allows us to directly specify SCV cross-
correlation via the SCV cross-covariance Cs. Here, values in
“off-blocks” (pairwise cross-covariances between SCVs) can
now be varied in average value of their magnitudes, which we
denote as “SCV cross-corr” γ. SCVs become more correlated
as γ increases, with γ = 0 indicating uncorrelated SCVs. This
model better represents real-world SCVs which are typically
correlated, such as with fMRI data.

There are a number of different variables in generating the
underlying SCVs that affects performance of the algorithms.
These variables include the number of SCVs N , the number
of samples T , the number of the datasets K, the effective rank
of the SCVs Rn, the SNR within SCVs (represented by αn),
and the degree of SCV cross-correlation (represented by γ).
For the following experiments, we study the effect of varying
all of these variables except for N and T , since all algorithms
consistently perform worse with increasing N and decreasing
T . For further simplicity, we specify each SCV’s αn to be
distinct and equidistant within [0.8 0.5], to represent SCVs with
both high and low source correlation. Therefore, we study the
performance of the algorithms with respect to the number of the
datasets K, the effective rank of the SCVs Rn, and the degree
of SCV cross-correlation (via γ). Each simulation concerns
changing one variable while keeping the others fixed to either
small or large values.

Unless otherwise specified, in all simulations we fix N =
4, K = 10, and T = 10000. All SCVs have Csn specified
according to (13), withαn = [0.8 0.7 0.6 0.5] respectively for the
4 SCVs, and Rn the same for all SCVs. Cs is specified such
that SCV covariances equal Csn , and the average magnitude
of pairwise SCV cross-covariances equals γ. All SCVs are
then generated concurrently from a multivariate Gaussian ran-
dom vector S (mean 0 ∈ R

NK , covariance Cs ∈ R
NK×NK ).

Sources are then distributed to their corresponding datasets S[k],

Fig. 4. CPU time (seconds) w.r.t. varying number of sources N (fixing
K = 10) and number of datasets K (fixing N = 4).

then mixed according to X[k] = A[k] S[k] with values in A[k]

drawn from the standard Gaussian distribution.
Later, we also test performance with noisy observations: X[k]

= η A[k] S[k] + (1− η) N[k], where N[k] is standardized
Gaussian noise, and η ∈ [0 1] is a normalized measure of
dataset SNR. We implement η = 1 (noiseless X[k]) for all earlier
experiments except when later testing the effect of η.

Fig. 4 plots the algorithms’ CPU time performances with
varying the number of SCVs N and the number of datasets K.
We first note that SUMCORR and ACCM are among the least
expensive JBSS algorithms, with comparable time costs. Other
MCCA algorithms have considerably higher costs (in order of
MAXVAR, MINVAR, GENVAR, and SSQCOR), and IVA-G
has the highest cost. JBSS-SOS has the second highest cost for
small N , but is comparable to MCCA algorithms for very large
N . Both plots were observed using Rn = 2, γ = 0.0, and η = 1,
however we note that across all experiments, each algorithm’s
time was observed to primarily only depend on the dimensions
N and K, and less on the statistics of the data.

Fig. 5 plots the algorithms’ joint-ISI performances with re-
spect to K. IVA-G is consistently the most accurate of these
algorithms. ACCM is generally second to fourth most ac-
curate (most to third most accurate orthogonally constrained
algorithm), often competing closely with SSQCOR and JBSS-
SOS. Given uncorrelated SCVs (γ = 0.0) in (a) and (b), or-
thogonally constrained algorithms such as ACCM. SSQCOR,
and JBSS-SOS are nearly able to match IVA-G’s performance.
SUMCORR and MAXVAR perform nearly identically in all
cases here, except for (c) where SUMCORR performs worse.
Performance of GENVAR in (a) and (b) is difficult to ascertain:
intuitively when SCVs have Rn <K, then the smallest K-Rn

eigenvalues of SCV covariances are expected to describe SCV
noise. Thus, GENVAR may perform well when Rn = K and
SCVs are uncorrelated as in (b) where K = 10, but otherwise
GENVAR may not be a dependable MCCA algorithm. MIN-
VAR is consistently among the worst performing algorithms.
Finally, with γ = 0.4 in (c) and (d), ACCM significantly outper-
forms all MCCA algorithms, and outperforms JBSS-SOS in (d)
for Rn = 10, indicating a relatively high-quality orthogonally
constrained solution.

Fig. 6 plots the algorithms’ joint-ISI performances with re-
spect to varying the effective rank of all SCVs Rn. As in
Fig. 5, we see that IVA-G is the most accurate algorithm, that
ACCM is second to fourth most accurate (closely compet-
ing with SSQCOR and JBSS-SOS), and that SUMCORR and
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Fig. 5. Joint-ISI performance w.r.t. varying number of datasets K, while fixing SCV effective rank Rn and “SCV cross-corr” γ. (a) Rn = 2, γ = 0.0.
(b) Rn = 10, γ = 0.0. (c) Rn = 2, γ = 0.4. (d) Rn = 10, γ = 0.4.

Fig. 6. Joint-ISI performance w.r.t. varying effective rank of the SCVs Rn, while fixing “SCV cross-corr” γ and num- ber of datasets K. (a) K = 10, γ =
0.0. (b) K = 100, γ = 0.0. (c) K = 10, γ = 0.4. (d) K = 100, γ = 0.4.

Fig. 7. Joint-ISI performance w.r.t. varying the average of absolute values in pairwise SCV cross-covariances (“SCV cross-corr”) γ, while fixing SCV
effective rank Rn and number of datasets K. (a) Rn = 2, K = 10. (b) Rn = 10, K = 10. (c) Rn = 2, K = 100. (d) Rn = 10, K = 100.

MAXVAR perform nearly identically to each other. SUM-
CORR and MAXVAR also perform worse with larger Rn,
likely attributed to their generative model in (11) assuming Rn

= 1. GENVAR performs comparatively well in (a) given the
SCVs are close to full effective rank (Rn = K), but otherwise
performs poorly. Finally, we note that ACCM significantly out-
performs all other orthogonally constrained algorithms in (d)
when γ, K, and Rn are large, representing data with a higher
level of complexity in inter-SCV and intra-SCV correlation
(often observed with real-world data). We do not include CPU
time plots with respect to increasing Rn, since changes in time
were not significant across algorithms, except for IVA-G where
time was significantly higher for Rn = 1 and nearly constant for
all other Rn.

Fig. 7 plots the algorithms’ joint-ISI performances with re-
spect to varying the average of absolute values in pairwise SCV
cross-covariances (“SCV cross-corr”) γ. SCVs become more

correlated as γ increases, corresponding to a significantly worse
performance for orthogonally constrained methods. As IVA-G
does not constrain the W[k] to be orthogonal, IVA-G signifi-
cantly outperforms when γ is higher. As in Figs. 5 and 6, we
note that ACCM generally the most to third most accurate or-
thogonally constrained algorithm. Additionally, Figs. 5, 6, and
7 all demonstrate that performance difference between ACCM
and the other orthogonally constrained algorithms increases
significantly when γ, Rn and K are large. Other similarities
to previous figures are that GENVAR performs comparatively
well here in (b) given that Rn = K (see K = 10), and that
MAXVAR and SUMCORR perform nearly identically to each
other. We also note that MAXVAR and SUMCORR are among
the worst performing MCCA algorithms observed in these sim-
ulated conditions. Regarding performance of SUMCORR, this
may be due to the fact that the SUMCORR solution is esti-
mated from the N principal eigenvectors of Ĉx as mentioned
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Fig. 8. Joint-ISI performance w.r.t. varying normalized dataset SNR η, while fixing SCV effective rank Rn and “SCV cross-corr” γ. (a) Rn = 2, γ = 0.0.
(b) Rn = 10, γ = 0.0. (c) Rn = 2, γ = 0.4. (d) Rn = 10, γ = 0.4.

in Section V-B. With correlated SCVs, principal eigenvectors of
Cs are farther from block diagonal, leading to worse estimation.
In contrast, ACCM selects N eigenvectors that are close as
possible to “block diagonal”, which better ensures that the N
different SCVs are identified, leading to better performance
given correlated SCVs. We observed that changes in time with
varying γ were not significant across algorithms, except for
IVA-G where time slightly increased as γ increased.

Fig. 8 plots the algorithms’ joint-ISI performances with re-
spect to varying the SNR η, with η ∈ [0 1], and Gaussian noise
added by X[k] = η A[k] S[k] + (1− η) N[k]. If we were to
observe as T → ∈ fty, adding noise this way can be seen as
“shrinking” values in the data covariance Ĉx, which tends Ĉx

closer to an identity matrix as η → 0, resulting in unidentifiable
sources for all algorithms. An interesting note is that IVA-
G is the best performing algorithm with high SNR η, but is
among the worst performing for low η. The orthogonally con-
strained algorithms appear to perform relatively better for very
low SNR; this may be due to the constraint’s reduction of the
solution space (effectively half as many parameters to estimate)
being useful when the data is especially noisy. Otherwise, all
other conclusions noted from the previous figures were also ob-
served here. ACCM is among the best performing orthogonally
constrained algorithms, and ACCM performs relatively well for
very low SNR.

Next, we study the performance of the JBSS algorithms for
fMRI analysis in the context of a hybrid data experiment.

B. fMRI Hybrid Experiment

One common application of JBSS is for analyzing medical
imaging datasets, particularly with functional magnetic reso-
nance imaging data (fMRI) [4], [6], [7], [8]. There are several
ways of applying JBSS to fMRI data, but for our experiments
we apply JBSS to the data introduced in [34], openly available at
https://coins.trendscenter.org. Having fMRI source components
previously extracted from this dataset, we use these sources in
a hybrid experiment to generate hybrid data. This allows us to
scale the data to a very large number of datasets, while also
allowing us to know the ground truth and thus directly infer the
estimation performance of the algorithms.

A total of K = 200 datasets are generated over N = 20
SCVs, wherein each SCV is generated from linear mixtures
of fMRI source components combined with additive Gaussian

noise. The SCV generative model is given the same as in (12),
with Vn ∈ R

Rn×T as the low rank fMRI components spanning
Sn, Un ∈ R

K×Rn as the weights of the components within
each s

[k]
n , and Zn ∈ R

K×T as the noise matrix.
Each SCV is given an effective rank Rn between 2 and 10,

for which Rn fMRI components Vn ∈ R
Rn×T are assigned to

that SCV. We introduce various levels of correlation across the
SCVs by specifically introducing correlation across the differ-
ent Vn. Analogous to what is done in Section VI-A where we
define the average magnitude of correlation between SCVs γ,
here we define the magnitude of correlation between the SCVs’
respective fMRI components Vn.

To introduce this correlation across the Vn, we first specify
a matrix H � [(V1)

�, …, (VN )�]� ∈ R
RH×T as the vertical

concatenation of the Vn, with RH �
∑N

n=1 Rn, and ĈH =
1

T−1 HH� ∈ R
RH×RH as the desired cross covariance matrix

among all Vn. Correlation between any two Vn is introduced
by specifying the pairwise cross covariances Θ̂(m,n) � 1

T−1

Vm V�
n ∈ R

Rm×Rn . For each pair of SCVs, all values of the
corresponding Θ̂m,n are made to equal a value β(m,n) drawn
randomly from the uniform distribution in [0 0.4], and all Θ̂n,n

are specified as matrices where diagonal values equal 1 and off-
diagonal values equal 0.5. This ensures that the SCVs are still
separable from each other (maximally uncorrelated) despite the
SCVs being correlated.

With desired covariance ĈH defined by the pairwise cross
covariances Θ̂(m,n), we then obtain RH fMRI components
H with covariance ĈH by applying a coloring transform on
RH uncorrelated fMRI components H̃ ∈ R

RH×T , given by
the coloring transform H = V̂H D̂

1
2

H H̃. Here V̂H are the
eigenvectors of desired covariance matrix ĈH, and D̂H the
respective eigenvalues. With correlated fMRI components thus
obtained by H, we thus distribute the different Vn to each SCV,
and then generate SCVs according to Sn =UnV

�
n + Zn, with

values in Un and Zn both drawn from the standard Gaussian
distribution. This produces data with different levels of depen-
dence amongst and within the SCVs, ultimately to be reflective
of the complex dependence relations exhibited for fMRI and
other medical imaging modalities.

Once SCVs are generated, sources within each SCV are
distributed to their corresponding datasets S[k], then mixed
according to X[k] = A[k] S[k] with values in A[k] drawn from
the standard Gaussian distribution. As done in the previous
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TABLE III
MEAN ± STD. OF JOINT-ISI (JISI) AND CPU TIME (MINUTES) OF JBSS
ALGORITHMS IN ESTIMATING THE FMRI SOURCES, AVERAGED OVER 50

RANDOM MIXTURES. SUMCORR, MINVAR, AND GENVAR ARE

EXCLUDED DUE TO POORER JISI PERFORMANCES

IVA-G ACCM JBSS-SOS SSQCOR MAXVAR

jISI
0.01

± 8e-5
0.04

± 9e-12
0.07

± 1e-3
0.08

± 7e-3
0.10

± 2e-15

time
947.3
± 118

1.7
± 2e-2

26.3
± 5.2

5.6
± 2e-1

8.6
± 5e-1

simulations, we run the algorithms on the mixed sources to
estimate corresponding W[k]. We use joint-ISI to compare the
methods’ estimated W[k] to the true A[k]. Table III measures
joint-ISI (jISI) and CPU time of the JBSS methods averaged
over 50 random variations of A[k].

We first note here that IVA-G comes the closest to estimating
the hybrid SCVs, consistent with IVA-G being considered a
“gold standard” of JBSS algorithms exploiting source corre-
lation across datasets. However, IVA-G is disproportionately
burdened by high computational costs, well above that of any
other algorithm. This is due to the fact that IVA-G has quartic
complexity with respect to K (effectively O(qNK4) in the limit
as K → ∈ fty). It is notable that the standard deviation of
CPU time for IVA-G is also extremely large, almost 2 hours
for this dataset, which is disproportionately large relative to
the mean time. In contrast, all other algorithms tested have
very small CPU time standard deviations relative to their mean
time. This suggests that the simpler cost functions of the other
algorithms provide a significant advantage with respect to the
relative consistency in their CPU times.

After IVA-G, ACCM is the second most accurate algorithm,
with joint-ISI comparable to IVA-G. It is notable that ACCM
can achieve a low joint-ISI despite being an orthogonally con-
strained algorithm operating on correlated SCVs, where the
true A[k] are relatively far from orthogonal. However, unlike
IVA-G, ACCM is among the fastest algorithms, only beaten by
SUMCORR in that regard. Whereas IVA-G takes an average
of 15.8 hours to estimate the sources, ACCM takes an aver-
age of only 1.7 minutes. The other algorithms either trade off
worse estimation for better time performance (SUMCORR), or
have both worse estimation and time performance (JBSS-SOS,
SSQCOR, and MAXVAR). This shows that ACCM is among
the fastest JBSS algorithms, yet ACCM can also provide a reli-
able estimation performance compared with the other efficient
JBSS algorithms.

VII. DISCUSSION

These experiments demonstrate that while IVA-G is perhaps
the most statistically efficient algorithm exploiting source cor-
relation across datasets, it is also the most costly. Indeed for ICA
and IVA, the most statistically efficient algorithms are costlier
than simpler orthogonally constrained algorithms.

In the context of optimizing for both statistical efficiency and
time of the decomposition, it is beneficial to use a faster or-
thogonally constrained algorithm as an initialization to a more
statistically efficient algorithm, such as IVA-G or other variants

of IVA. Orthogonally constrained algorithms like ACCM pro-
vide at least an inexpensive initial guess that is sufficiently close
to the optimal solution, for which more statistically efficient
algorithms can refine upon. We note that ACCM alone is a
quality option if the SCVs are close to uncorrelated or if speed
is an important concern.

VIII. CONCLUSION

This paper introduces an efficient analytic solution to JBSS,
derived from the eigendecomposition of the observed data’s
covariance matrix. Based on assumption that the SCVs are
uncorrelated, the proposed ACCM algorithm exploits the block
diagonal nature of the SCV cross-covariance matrix to refor-
mulate the problem as solving a system of linear equations
from eigenvectors of the observed data’s covariance matrix.
Thereafter, identifiability conditions of ACCM are derived, and
an efficient scheme is proposed to estimate the solution.

The ACCM algorithm is compared with other JBSS algo-
rithms exploiting source correlation across datasets, including
the MCCA algorithms, a comparable variant of GJD (JBSS-
SOS), and IVA-G. Simulations varying the statistics of the data
demonstrate that ACCM is among the most statistically and
computationally efficient of the tested algorithms. Performance
is then demonstrated on fMRI data in a hybrid experiment,
which reiterates these strengths of ACCM.

Finally, we note that performing the ACCM algorithm alone
is perhaps most useful when speed is a concern, and a rea-
sonably accurate solution is desired in a very small amount of
time. Otherwise, ACCM can be used to initialize a more statis-
tically efficient algorithm such as IVA-G. This initialization is
expected to lead to an overall JBSS decomposition that is both
statistically and computationally efficient.
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